Sections
Text Area
Resources
Text Area
- Flavio Ponzina, Simone Machetti, Marco Rios, Benoît W. Denkinger, Alexandre. Levisse, Giovanni Ansaloni, Miguel Peon-Quiros, David Atienza, “A hardware/software co-design vision for deep learning at the edge”, IEEE Micro Magazine, ISSN: 0272-1732, Vol. 42, Issue no. 1, pp. 48 – 54, DOI: 10.1109/MM.2022.3195617, IEEE Press, December 2022.
- Joshua Klein, Irem Boybat, Yasir Qureshi, Martino Dazzi, Alexandre Levisse, Giovanni Ansaloni, Marina Zapater, Abu Sebastian, and David Atienza, “ALPINE: Analog In-Memory Acceleration with Tight Processor Integration for Deep Learning”, IEEE Transactions on Computers (TC), 2023.:
- Shao, Q., Wang, Z., & Yang, J. J. (2022). Efficient AI with MRAM. Nature Electronics, 5(2). 2.Wang, Z., Wu, H., Burr, G. W., Seong Hwang, C., Wang, K. L., Xia, Q., & Joshua Yang, J. (2020). Resistive switching materials for information processing. Nature Reviews Materials.
- Z. Xiao et al., "Device Variation-Aware Adaptive Quantization for MRAM-based Accurate In-Memory Computing Without On-chip Training," 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2022, pp. 10.5.1-10.5.4, doi: 10.1109/IEDM45625.2022.10019482.
- Y. LeCun, "1.1 Deep Learning Hardware: Past, Present, and Future," 2019 IEEE International Solid- State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2019, pp. 12-19, doi: 10.1109/ISSCC.2019.8662396.
- Nature Electronics, 2022, 5, 84-91
- Nature, 2022, 602, 364
- Nature Electronics, 2020, 3, 664-671
- Nature, 2020, 579, 32-33
- Nature Nanotechnology, 2019, 14, 776-782
- Nature Electronics, 2022, 5, 483-484
- Nature Nanotechnology, 2023, DOI:
- [DAC'23] J. Chen, F. Tu, K. Shao, F. Tian, X. Huo, C.-Y. Tsui, K.-T. Cheng, "AutoDCIM: An Automated Digital CIM Compiler," Design Automation Conference (DAC), 2023.
- [ISSCC'23] F. Tu, Y. Wang, Z. Wu, W. Wu, L. Liu, Y. Hu, S. Wei, S. Yin, "TensorCIM: A 28nm 3.7nJ/Gather and 8.3TFLOPS/W FP32 Digital-CIM Tensor Processor for MCM-CIM-based Beyond-NN Acceleration," International Solid-State Circuits Conference (ISSCC), 2023.
- [ISSCC'22] F. Tu, Y. Wang, Z. Wu, L. Liang, Y. Ding, B. Kim, L. Liu, S. Wei, Y. Xie, S. Yin, "A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W INT8 Reconfigurable Digital CIM Processor with Unified FP/INT Pipeline and Bitwise in-Memory Booth Multiplication for Cloud Deep Learning Acceleration," International Solid-State Circuits Conference (ISSCC), 2022.
- Weiwen Jiang, Lei Yang, Edwin Sha, Qingfeng Zhuge, Shouzhen Gu, Sakyasingha Dasgupta, Yiyu Shi and Jingtong Hu, "Hardware/Software Co-Exploration of Neural Architectures," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, (39)12, pp. 4805 - 4815, 2020 (2021